

Bericht

Bezeichnung des Projektes

Bestimmung von Wirkungsgrad, Wärmekapazität, Einstrahlwinkelkorrekturfaktor, Druckabfall und Zeitkonstante eines abgedeckten Sonnenkollektors (im Neuzustand) nach ÖNORM M 7714

Auftraggeber

RIPOSOL SOLARTECHNIK Ges. m. b. H.

A-9330 Althofen, Industriepark 12

Auftrag vom / Zahl

26.11.1998

Projekt Nr.

E4116/1

Sachbearbeiter Antonio Montilla

Ausstellungsdatum	20. Jänner 1999
Ausfertigungen: Anzahl/Nr.	3 / BE
Anzahl der Seiten	8
Anzahl der Beilagen im Blatt	7

Das (Die) Prüfergebnis(se) bezieht(en) sich ausschließlich auf den (die) Prüfgegenstand(stände).

Im Falle einer Vervielfältigung oder Veröffentlichung dieser Ausfertigung darf der Inhalt nur wort- und formgetreu und ohne Auslassung oder Zusatz wiedergegeben werden.

Die auszugsweise Vervielfältigung oder Veröffentlichung bedarf der schriftlichen Zustimmung des Forschungszentrums.

1. ZUSAMMENFASSUNG DER VERSUCHSERGEBNISSE

Riposol Solartechnik	RP 200	0 V (Tinox)
Auftraggeber	Riposol Solartechn	ik Ges.m.b.H.
Anschrift	A-9330 Althofen -	Industriepark 12
Telefon	04262/37855	
Fax	04262/37855 DW 1	3
Prüfbericht Nr Ausstellungsdatum	E4116/1 vom 20.01	1.1999
Bruttofläche	4.2016 m ²	
Eintrittsfläche	3.7655 m ²	
Absorberfläche	3.6966 m ²	
Wirkungsgradgleichung: $\eta_k = a_0 - a_1(\theta_k - \theta_u)/N$	$I_e - a_2 (\theta_k - \theta_u)^2 / M_e$	
Daten bezogen auf:	Eintrittsfläche	Absorberfläche
Konversionsfaktor des Kollektors η _{k0} = a ₀	0.789	0.804
Linearer Wärmeverlustkoeffizient a ₁	3.72 Wm ⁻² K ⁻¹	3.78 Wm ⁻² K ⁻¹
Quadratischer Wärmeverlustkoeffizient a ₂	0.0144 Wm ⁻² K ⁻²	0.0143 Wm ⁻² K ⁻²
Wirkungsgrad η_k bei $(\vartheta_k - \vartheta_u)/M_e = 0.05$ (entspricht bei Einstrahlungsintensität von $M_e = 800W/m^2$ einem $\vartheta_k - \vartheta_u$ von 40K)	0.575	0.586
Modul Norm-Leistung (Me = 800W/m ² ; 9k-9u = 40K)		1735 W
Einstrahlwinkel-Korrekturfaktor: K(50°)		0.95
Gesamtwärmekapazität	$c_G =$	24.3 kJK ⁻¹
Zeitkonstante (siehe Beilage 6 und 7)		57.5 s

Die Stillstandsprüfung wurde bestanden. Die Prüfergebnisse beziehen sich ausschließlich auf den geprüften und von uns gekennzeichneten Kollektor.

Sachbearbeiter

Projektleiter

Bereichsleiter

Antonio Montilla

Dipl.-Ing. Alexander Storch Dipl.-Ing. Hubert Fechner

Bestimmung von Wirkungsgrad, Wärmekapazität, Einfallswinkelkorrekturfaktor, Druckabfall und Zeitkonstante nach ÖNORM M 7714 (im Neuzustand des Kollektors)

Prüfstelle:

ÖSTERREICHISCHES FORSCHUNGS- UND PRÜFZENTRUM ARSENAL Ges.m.b.H

Prüfnummer: E4116/1

Antragsteller: Riposol Solartechnik Ges.m.b.H. Eingang des Prüfgegenstandes: 03.12.1998

Prüfung im Zeitraum vom 04.12.1998 bis 20.01.1999

Meßgeräte:

Pyranometer Fabr. Kipp & Zonen Type CM21 Gerät Nr. 930 113, kalibriert

2 Stk. Pt-100 zur Umgebungs-Temperaturerfassung

Magnetisch - induktiver Durchflußmesser KROHNE ALTOFLUX, kalibriert, bestehend aus:

Meßwertaufnehmer IFS 5000 Fabr Nr.: A94 52 295

Meßumformer IFC 080K Fabr Nr.: A94 52 295

1 Stk. Pt 100 zur Temperaturmessung des Wärmeträgers bei der Volumenmessung, kalibriert

2 Stk. Pt-100 zur Temperaturmessung des Wärmeträgermediums bei Ein- und Austritt, kalibriert

4 Stk. Pt-100 zur Temperaturmessung der Acrylglasplatte ("Himmelstemperatur"), kalibriert

1 Stk. Differenzdruckaufnehmer, Hottinger (0.1 bar) Nr.3D, kalibriert

1 Stk. HBM 5kHz-TF-Meßverstärker

Flügelradanemometer Schiltknecht Mini-Air 2 Nr.: 35027, kalibriert, mit Flügelradsonde Nr.: 642.24

Meßwerterfassung:

Keithley 7001 Switch System Nr.:516038

Keithley DMM 196 Nr.:514409, kalibriert

PC 486/33 MHz Tower, 8 MB RAM, 130+420 MB HD

IEEE-Bussystem

Datenverarbeitung mittels HP-Instrument Basic

2. ALLGEMEINE ANGABEN ÜBER DEN GEPRÜFTEN KOLLEKTOR

Auftraggeber: Riposol Solartechnik Ges.m.b.H.

Hersteller des Kollektors: Riposol Solartechnik Ges.m.b.H., A-9330 Althofen, Industriepark 12

Type des Kollektors: RP 200 V (Tinox)

Gesamtabmessungen (ohne Anschlußstutzen): 2020 mm*2080 mm*115 mm

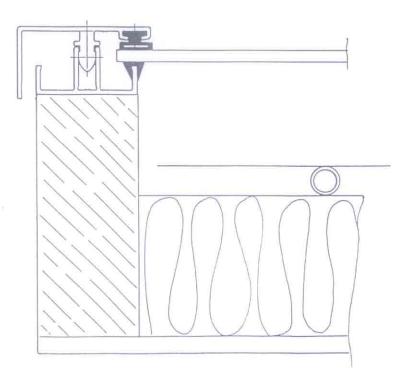
Gesamtmasse des Kollektors ohne Wärmeträger: 100 kg

Gesamtfüllvolumen des Kollektors: 3.9 |

Art der Abdeckung: 4 mm ESG-Solarglas prismiert, τ ≈ 0,90 (Auftraggeberangabe)

Absorberaufbau: Harfe, 16 parallele Registerrohre, Ø22 x 1 mm Sammelrohre, Cu-Blech 0.2 mm,

Absorberrohre Cu Ø10 x 0.8 x 1750 mm


Absorberbeschichtung: Tinox,

Absorptionskoeffizient α =0.91, Emissionskoeffizient ϵ = max. 0.05 (Angaben des Auftraggebers)

Kollektor-Wärmedämmung: Steinwolle, Dicke 50 mm mit Glasvlies kaschiert, 50 kgm⁻³ Vom Hersteller empfohlener Wärmeträger: Propylenglykol (40%): Wasser (60%)

Druckabfall des Kollektors bei Massenstrom von 72 kgh⁻¹m⁻² (271.11 kgh⁻¹): 2.54 mbar

Abbildung des Kollektors (aus Unterlagen des Auftraggebers)

3. SYMBOLE UND EINHEITEN

A _e	Eintrittsfläche	in m ²
Aa	Absorberfläche	in m ²
A_b	Bruttofläche	in m ²
a ₁	Koeffizient der Ausgleichsparabel	in Wm ⁻² K ⁻¹
a_2	Koeffizient der Ausgleichsparabel	in Wm ⁻² K ⁻²
c_{F}	spezifische Wärmekapazität des Wärmeträgers (Fluid)	in Jkg-1K-1
c_G	effektive Wärmekapazität des gesamten Kollektors	in JK ⁻¹
k _{eff}	effektiver Wärmeverlustkoeffizient	in Wm ⁻² K ⁻¹
k _{eff0}	Anfangswert des Wärmeverlustkoeffizienten keff	in Wm ⁻² K ⁻¹
Me	Einstrahlungsintensität auf die Kollektor-Eintrittsfläche	in Wm ⁻²
* m	Massenfluß des Wärmeträgers	in kgs ⁻¹
m_A	Masse des Absorbers	in kg
m_F	Masse des Wärmeträgers im Kollektor	in kg
m_Z	Masse der Zwischenbauteile	in kg
P_{v}	Wärmeverlustleistung des Kollektors	in W
Pn	Nutzleistung des Kollektors	in W
p_V	spezifische Wärmeverlustleistung des Kollektors	in Wm ⁻²
Δр	Druckabfall im Kollektor	in mbar
R^2	Bestimmtheitsmaß, Güte der Regression	
t_1, t_2	Anfangs- und Endzeitpunkt des Meßintervalls	in s
V	Volumenstrom des Wärmeträgers	in m ³ s ⁻¹
W	Luftgeschwindigkeit	in ms ⁻¹
9 _a	Kollektor-Austrittstemperatur	in °C
θ _e	Kollektor-Eintrittstemperatur	in °C
$\vartheta_{\rm u}$	Umgebungs-Lufttemperatur	in °C
ϑ_k	mittlere Kollektortemperatur	in °C
θ_{v}	Wärmeträgertemperatur im Mengenmeßgerät	in °C
η_k	Wirkungsgrad des Kollektors	
η_{k0}	Konversionsfaktor	
ρ	Dichte des Wärmeträgers bei $ eta . $	in kgm ⁻³

4. STILLSTANDSBEDINGUNG

Der Kollektor wurde für die Dauer von 5 Stunden im ungefüllten Zustand einer Bestrahlungsstärke von 819,6 Wm-² ausgesetzt. Bei der anschließenden visuellen Kontrolle wurden keinerlei Veränderungen festgestellt.

5. BESTIMMUNG DER WIRKUNGSGRADCHARAKTERISTIK

5.1 Angewendetes Verfahren:

Innenprüfverfahren mittels Sonnensimulatorbestrahlung

Die Bestrahlungseinrichtung besteht aus 45 Metalldampf-Entladungslampen Fabrikat Thorn, Type CSI 1000.

Zur Abschirmung des längerwelligen IR-Strahlungsanteiles ($\lambda > 3~\mu m$) dient eine Acrylglasplatte. Durch eine Kühleinrichtung wird die Temperatur der dem Kollektor zugewandten Seite des Acrylglases auf Temperaturen knapp unter der Umgebungslufttemperatur gehalten.

5.2 Erforderliche Kollektordaten:

Kollektor-Eintrittsfläche A_e: 3.7655 m² Verwendeter Wärmeträger: Wasser

5.3 Meßwerte und Auswertung:

4.3.1 Berechnungsformeln:

Massenstrom des Wärmeträgers:

$$\dot{m} = \dot{V} \rho$$

mittlere Kollektortemperatur:

$$\vartheta_k = \frac{\vartheta_e + \vartheta_a}{2}$$

Nutzleistung:

$$P_n = \stackrel{\cdot}{m} \int_{\vartheta_e}^{\vartheta_a} c_p(\vartheta) d\vartheta \approx \stackrel{\cdot}{m} \overline{c}_p (\vartheta_a - \vartheta_e)$$

Wärmeverlustleistung:

$$P_v = k A_e (\vartheta_k - \vartheta_u)$$

Der Wirkungsgrad wird im stationären Zustand bestimmt und ist definiert als das Verhältnis der Nutzleistung P_n unter stationären Betriebsbedingungen zur einfallenden Strahlungsleistung A_e*M_e

$$\eta_k = \frac{P_n}{M_e * A_e}$$

Die funktionale Abhängigkeit des Wirkungsgrades von der meteorologischen Meßgröße und den systemtechnischen Betriebsgrößen kann durch folgende mathematische Beziehung dargestellt werden:

$$\eta_k = \eta_{k0} - a_1 * \frac{\Delta \theta}{M_e} - a_2 * \frac{(\Delta \theta)^2}{M_e}$$

mit:
$$\Delta \mathcal{G} = \frac{1}{2} * (\mathcal{G}_e + \mathcal{G}_a) - \mathcal{G}_u$$

Die Koeffizienten a₀ (=η_{ko}), a₁ und a₂ haben folgende Bedeutung:

 η_{ko} ...Wirkungsgrad bei $\vartheta_k = \vartheta_u$

Die Koeffizienten a₁ und a₂ beschreiben den Wärmeverlust des Kollektors.

Zur Bestimmung eines effektiven, temperaturabhängigen Wärmeverlustkoeffizienten wird folgende Gleichung herangezogen:

$$k_{eff} = a_1 + a_2 * \Delta \theta$$

Ergebnisse aus den Messungen: siehe Beilage 1

5.4. Bestimmung der Wirkungsgradkurve:

Eine quadratische Ausgleichsparabel ist durch die einzelnen Meßpunkte, nach der Methode der kleinsten Fehlerquadrate, zu bestimmen:

für eine Einstrahlung von 800 Wm⁻² ergeben sich die folgenden Koeffizienten:

$$a_0 = 0.789$$

 $a_1 = 3.72$
 $a_2 = 0.0144$

Das Bestimmtheitsmaß R2: 0.9999

Konversionsfaktor des Kollektors η_{ko} (=a₀): 0.789

Wärmeverlustkoeffizient des Kollektors bei $\theta_{\rm K} = \theta_{\rm U}$, $k_{\rm eff0}$ (=a₁): 3.72 Wm⁻²K⁻¹

Wirkungsgradkurve aus den gemessenen Werten (siehe Beilage 2)

Wirkungsgradkurve für eine Bestrahlungsstärke von 800 Wm-2 (siehe Beilage 3)

Umrechnung auf andere Bezugsflächen:

Konversionsfaktor: η_{k0b} Kollektor-Bruttofläche An

Wärmeverlustkoeffizient: keff0 =a1

 $\eta_{k0b} = (A_e/A_b) * \eta_{k0e}$ $k_{eff0b} = (A_e/A_b)*k_{eff0e}$

Koeffizient a2

 $a_{2b} = (A_e/A_b)*a_{2e}$

Kollektor-Absorberfläche Aa

Konversionsfaktor: ηκρα

 $\eta_{k0a} = (A_e/A_a) * \eta_{k0e}$

Wärmeverlustkoeffizient: keff0 =a1

 $k_{eff0a} = (A_e/A_a)*k_{eff0e}$

Koeffizient a2

 $a_{2a} = (A_e/A_a) * a_{2e}$

Für die Absorberfläche $A_a = 3.6966 \text{ m}^2$ als Bezugsfläche bei einer Einstrahlung von 800 Wm⁻² ergeben sich die Koeffizienten:

 $a_0 = 0.804$; $a_1 = 3.78$; $a_2 = 0.0143$

5.5. EINSTRAHLWINKEL-Korrekturfaktor:

Da in der zukünftigen CE-Norm ausschließlich der Wert von 50° vorgesehen ist, wurde (abweichend von der dzt. gültigen ÖNORM) dieser Korrekturfaktor bestimmt.

$$K(50^{\circ}) = \eta_{ko}(50^{\circ}) / \eta_{ko}(0^{\circ}) = 0.95$$

6. BESTIMMUNG DER KOLLEKTORKAPAZITÄT

Die thermische Kapazität des Kollektors (in JK-1) wurde als Summe der Wärmekapazitäten der Bauelemente des Kollektors ermittelt.

Berechnungsformel:

 $c_G = \sum_i p_i m_i c_i$

Wichtungsfaktoren p, nach ÖNORM M 7714. Die Gesamtkapazität beträgt: $c_G = 24.3 \text{ kJK}^{-1}$

7. BESTIMMUNG DES DRUCKABFALLES

folgende Meßgrößen wurden ermittelt: (Kennlinienverlauf: siehe Beilage 4)

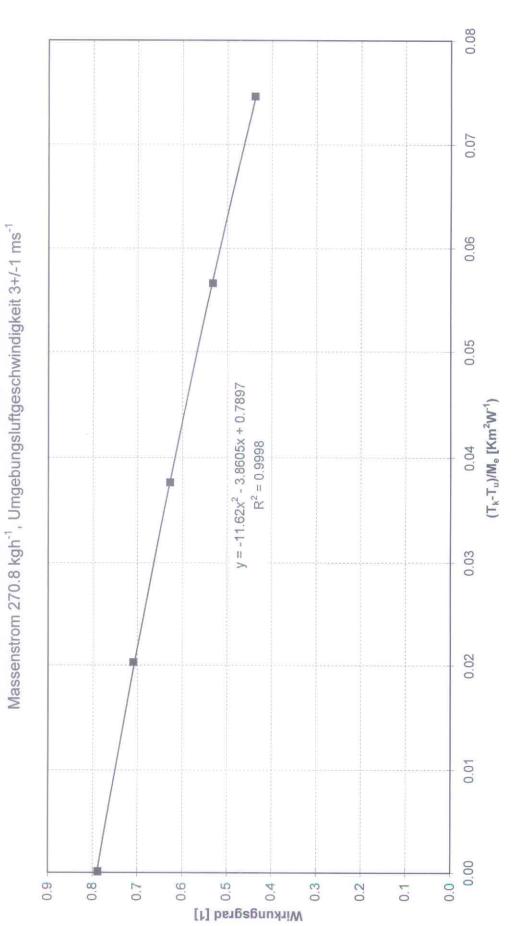
- -die Temperatur des Wärmeträgers am Eintritt in den Kollektor
- -der Massenstrom des Wärmeträgers durch den Kollektor
- -der Druckabfall des Wärmeträgers im Kollektor.

Messung Nr.	Temperatur Wärmeträger [°C]	Massenstrom [kgs ⁻¹]	Massenstrom [kgh ⁻¹]	Druckabfall [mbar]
1	20.5	0.01423	51.23	0,34
2	20.5	0.02094	75.40	0,54
3	20.5	0.02907	104.64	0,74
4	20.4	0.04243	152,76	0,98
5	20.4	0.05665	203.95	1,49
6	20.3	0.07532	271.17	2,54
7	20.1	0.08317	299.41	3,08
8	20.0	0.09610	345.98	4,06
9	19.9	0.11277	405,98	5,78
10	19.9	0.12160	437.76	6,47

E4116/1 Beilage 1

Meßwerttabelle RP 200 V (TINOX)

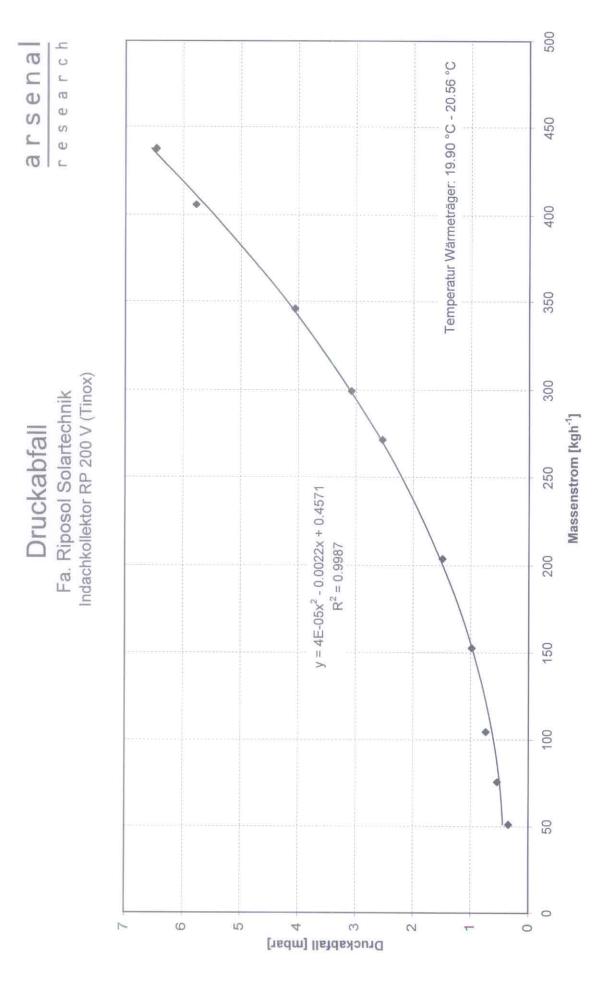
arsenal


Fa. Riposol Solartechnik Ges.m.b.H.

							Mittelwer	Mittelwerte uber die jeweilige Meisdauer	wellige m	elsdauer					
0 <	Dauer der Messung	Luftge- schwin- digkeit	Einstrahlung- Intensität (global)	Umge- bungsluft- Temperatur	Kollektor- Eintritts- Temperatur	Kollektor- Austritts- Temperatur	Tempera- tur Wärme- träger bei Mengen- messung	Volumenstrom des Wärmeträgers	Dichte des Wärme- trägers	Massenstrom des Wärmeträgers	spez.Wärmeka- pazität des Wärmeträgers bei mittlerer Kollektortem- perätur	Mittlere Kollektor- Temperatur	Temperatur- differenz Kollektor- Umgebungsluft	Kollektor- Wirkungs- grad Bezug: Eintritts- fläche	Kollektor- nutzleistung
	t ₂ -t ₁	W	Me	n o	ø	ණ	å	·>	р	m	S.	g,		Дķ	٩
	so.	ms	Wm-2	ပ္	ပ္	ပ္	ပ္	m ³ s ⁻¹ *10 ⁻⁶	kgm ⁻³	kgs-1	Jkg ⁻¹ K ⁻¹	ွ	×	Ξ	W
	006	33	821.9	21.4	17.5	25.2	17.4	271.6	938.8	0.0754	4181	21.40	0.01	0.7884	2440
	006	3	825.3	21.6	17.6	25.3	17.5	271.7	938.8	0.0754	4181	21.50	-0.19	0.7878	2448
	006	63	819.7	21.9	17.9	25.7	17.8	271.8	7.866	0.0754	4181	21.70	-0.12	0.7888	2435
	006	3	823.7	21.8	17.9	25.6	17.8	271.8	7.886	0.0754	4181	21.80	-0.05	0.7877	2443
	006	3	816	22.4	35.4	42.4	35.5	270.6	994	0.0747	4179	38.90	16.52	0.7083	2176
	006	3	816.9	22.4	35.5	42.5	35.7	270.6	993.9	0.0747	4179	39.10	16.63	0.7106	2186
	006	က	818.76	22.4	35.5	42.5	35.6	270.5	994	0.0747	4179	39.10	16.63	0.7099	2189
	006	60	817.37	22.5	35.6	42.6	35.7	270.4	993.9	0.0747	4179	39.10	16.62	0.7075	2178
	006	3	822.6	22.7	50.7	22	51.1	270.7	987.6	0.0743	4183	53.80	31.17	0.6302	1952
	006	63	825.6	22.8	20.7	57	51.1	270.7	987.6	0.0743	4183	53.80	31.12	0.6283	1953
	006	3	826.3	22.8	8.09	22	51.1	270.5	987.6	0.0742	4183	54.00	31.05	0.6250	1945
	006	3	831.4	22.8	50.7	22	51	270.6	987.6	0.0742	4183	53.90	31.02	0.6253	1958
	006	3	824.9	21.6	65.7	71.1	66.4	269.8	7.676	0.0734	4189	68.40	46.76	0.5332	1656
	006	က	825.4	21.7	65.8	71.2	66.4	269.7	979.7	0.0734	4189	68.40	46.77	0.5330	1657
15	006	3	822.1	21.8	65.7	71.1	66.4	269.6	7.676	0.0734	4189	68.50	46.62	0.5450	1643
	006	3	822	22	65.8	71.1	66.4	269.4	979.7	0.0733	4189	68,40	46.44	0.5310	1644
	006	3	824.5	22.4	81.5	86	82.6	270.1	970	0.0728	4200	83.80	61.31	0.4367	1356
	006	3	820.5	22.5	81.6	86	82.6	270.1	970	0.0728	4200	83.80	61.24	0.4360	1345
	006	3	820.4	22.4	81.5	86	82.6	270.0	970	0.0727	4200	83.70	61.35	0.4370	1350
	006	3	820.2	22.4	81.5	86	82.6	269.9	970	0.0727	4200	83.80	61.38	0.4407	1361

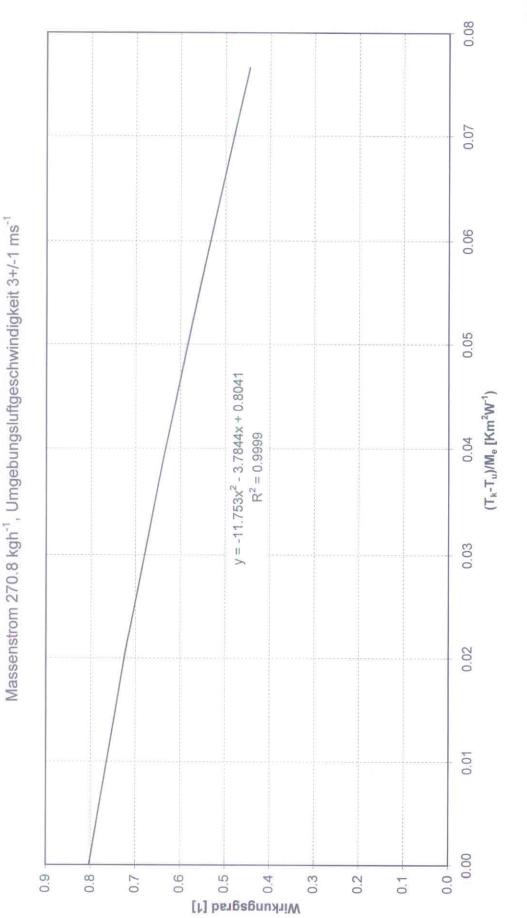
WIRKUNGSGRADKENNLINIE

Typ: Indachkollektor RP 200 V (Tinox); Fa. Riposol Solartechnik Einstrahlungsintensität M_e = 819.6 Wm⁻²; Bezug: Eintrittsfläche 3.7655 m²



WIRKUNGSGRADKENNLINIE

Typ: Indachkollektor RP 200 V (Tinox); Fa. Riposol Solartechnik Einstrahlungsintensität Me = 800 Wm⁻²; Bezug: Eintrittsfläche 3.7655 m² Massenstrom 270.8 kgh⁻¹, Umgebungsluftgeschwindigkeit 3+/-1 ms⁻¹

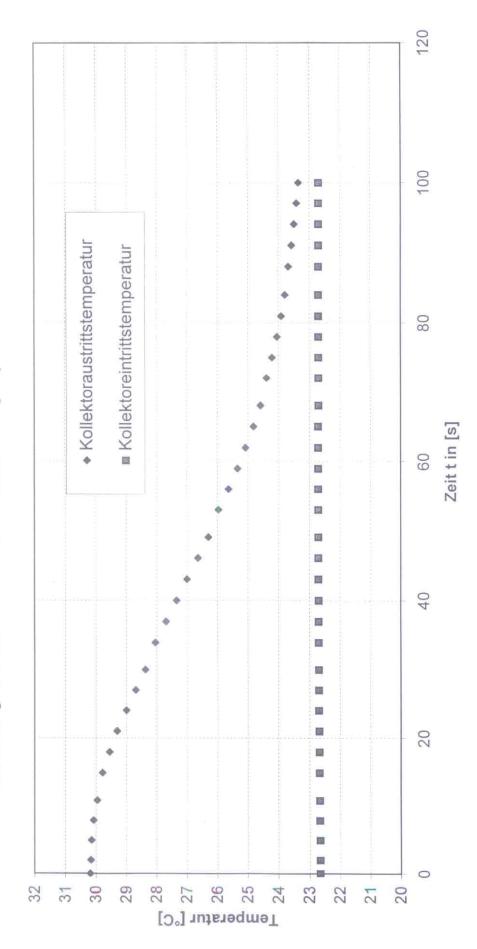


WIRKUNGSGRADKENNLINIE

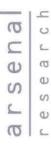
Typ: Indachkollektor RP 200 V (Tinox); Fa. Riposol Solartechnik Einstrahlungsintensität $M_e = 800 \text{ Wm}^{-2}$; Bezug: Absorberfläche 3.6966 m²

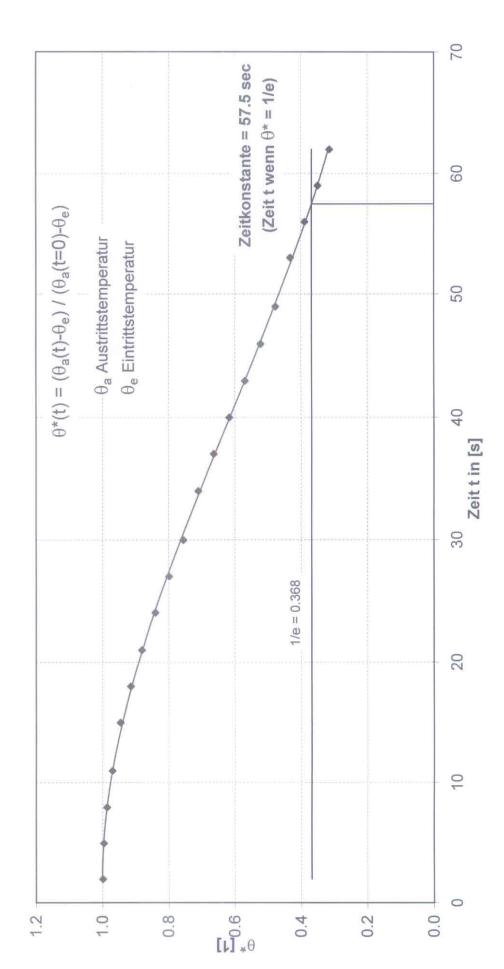
Temperaturverhalten

sena


O

Ø


Riposol Solartechnik / RP 200 V (Tinox)


bei freier Konvektion der Umgebungsluft nach dem Ausschalten

der Einstrahlung von 819.6 Wm $^{-2}$ nachdem Stabilität von $\theta_u = \theta_e$ erreicht wurde

Ermittlung der Zeitkonstante Riposol Solartechnik Indachkollektor RP 200 V (Tinox)

